Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography
نویسندگان
چکیده
High voltage electron microscopic tomography was used to determine the organization of the kinetochore plate and its attachment to the underlying chromosome. Six reconstructions were computed from thick sections of Colcemid-treated PtK1 cells and analyzed by a number of computer graphics methods including extensive thin slicing, three-dimensional masking, and volume rendering. When viewed en-face the kinetochore plate appeared to be constructed from a scaffold of numerous 10-20-nm thick fibers or rods. Although the fibers exhibited regions of parallel alignment and hints of a lattice, they were highly variable in length, orientation and spacing. When viewed in stereo, groups of these fibers were often seen oriented in different directions at different depths to give an overall matted appearance to the structure. When viewed "on edge," the plate was 35-40 nm thick, and in thin slices many regions were tripartite with electron-opaque domains, separated by a more translucent middle layer, forming the inner and outer plate boundaries. These domains were joined at irregular intervals. In some slices, each domain appeared as a linear array of 10-20-nm dots or rods embedded in a less electron-opaque matrix, and adjacent dots within or between domains often appeared fused to form larger blocks. The plate was connected to the underlying chromosome by less densely arrayed 10-20-nm thick fibers that contacted the chromosome-facing (i.e., inner) surface of the plate in numerous patches. These patches tended to be arrayed in parallel rows perpendicular to the long axis of the chromosome. In contrast to connecting fibers, corona fibers were more uniformly distributed over the cytoplasmic-facing (i.e., outer) surface of the plate. When large portions of the reconstructions were viewed, either en-face or in successive slices parallel to the long axis of the chromosome, the edges of the plate appeared splayed into multiple "fingers" that partly encircled the primary constriction. Together these observations reveal that regions of the kinetochore outer plate contain separate structural domains, which we hypothesize to serve separate functional roles. Our three-dimensional images of the kinetochore are largely consistent with the hypothesis that the outer plate is composed of multiple identical subunits (Zinkowski, R. P., J. Meyne, and B. R. Brinkley. 1991. J. Cell Biol. 113:1091-1110).
منابع مشابه
Kinetochore Structure: Electron Spectroscopic Imaging of the Kinetochore
The structure of the kinetochore in thin section has been studied in the Indian muntjac by an electron spectroscopic imaging technique. This procedure allows the analysis of the distribution of phosphorus within the layers of the kinetochore. The results indicate that this element is a major component of both the inner and outer plates whereas it is largely absent in the middle plate and fibrou...
متن کاملKinetochore structure: electron spectroscopic imaging of the kinetochore
The structure of the kinetochore in thin section has been studied in the Indian muntjac by an electron spectroscopic imaging technique. This procedures allows the analysis of the distribution of phosphorus within the layers of the kinetochore. The results indicate that this element is a major component of both the inner and outer plates whereas it is largely absent in the middle plate and fibro...
متن کاملPolarity of kinetochore microtubules in Chinese hamster ovary cells after recovery from a colcemid block
The polarity of kinetochore microtubules was determined in a system for which kinetochore-initiated microtubule assembly has been demonstrated. Chinese hamster ovary cells were treated with 0.3 micrograms/ml colcemid for 8 h and then released from the block. Prior to recovery, microtubules were completely absent from the cells. The recovery was monitored using light and electron microscopy to e...
متن کاملKinetochores Use a Novel Mechanism for Coordinating the Dynamics of Individual Microtubules
Chromosome alignment during mitosis is frequently accompanied by a dynamic switching between elongation and shortening of kinetochore fibers (K-fibers) that connect kinetochores and spindle poles . In higher eukaryotes, mature K-fibers consist of 10-30 kinetochore microtubules (kMTs) whose plus ends are embedded in the kinetochore . A critical and long-standing question is how the dynamics of i...
متن کاملDynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells
Duplicated mitotic chromosomes aligned at the metaphase plate maintain dynamic attachments to spindle microtubules via their kinetochores, and multiple motor and nonmotor proteins cooperate to regulate their behavior. Depending on the system, sister chromatids may display either of two distinct behaviors, namely (1) the presence or (2) the absence of oscillations about the metaphase plate. Sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 120 شماره
صفحات -
تاریخ انتشار 1993